

Doctoral School of Multidisciplinary Engineering Sciences (MMTDI)

Performance Analysis of ICT Systems

Lecture 4 Benchmarking Methodology for Network Interconnect Devices RFC 2544, RFC 5180 and RFC 8219

https://www.tilb.sze.hu/cgi-bin/tilb.cgi?0=m&1=targyak&2=NGD_MDA64_1

Dr. Gábor Lencse

Professor

Dept. of Telecommunications, University of Győr lencse@sze.hu

Agenda

- Introduction to the RFC-s
- Benchmarking Methodology for Network Interconnect Devices
 - Based on RFC 2544, RFC 5180 and RFC 8219
- Research and publication possibilities

What are the RFC-s?

- RFC: Request for Comments
 - Primary documents about networking protocols, application, measurement methods
 - Identified by their RFC numbers
 - Published by IETF (Internet Engineering Task Force) after a long process
 - All the details can be found at: <u>https://www.ietf.org/standards/process/</u>

Types of RFC-s

- Standards Track:
 - Old: three phases
 - Proposed Standard --> Draft Standard --> Standard
 - It proved to be too many
 - New: only two phases (RFC 6410)
 - Proposed Standard --> Internet Standard
- Also exist Informational, Experimental RFC-s
 - For example, the Benchmarking Working Group produces only Informational RFC-s
 - They are still 'de facto' standards.
 - And there are RFC-s with the date of April 1 \odot

How an RFC is born?

- Someone invents something and writes an individual Internet Draft (I-D)
 - There is a required structure, style and format
 - Upload: <u>https://datatracker.ietf.org/submit/</u>
 - Its filename looks like:
 - draft-author-intendedwg-some-words-00
 - An e-mail is sent to the mailing list of the intended working group
 - If someone is interested in: a discussion is started. $\ensuremath{\textcircled{\odot}}$
 - If no one is interested in: the draft will be forgotten $oldsymbol{arepsilon}$
 - A draft expires in 6 months, new version can be submitted, etc.

How an RFC is born?

- There are IETF meetings 3 times a year
 - A draft may be presented in a working group if the WG chair gives prior permission
 - Responses during the meeting and on the mailing list
 - Once a working group adopts a draft, it becomes a working group draft, and its name looks like:
 - draft-ietf-wgname-some-words-00
 - The "-00" version must be approved by a WG chair
 - If there is a rough consensus in the working group, then there is a WGLC (WG Last Call)
 - It may happen multiple times! ;-)

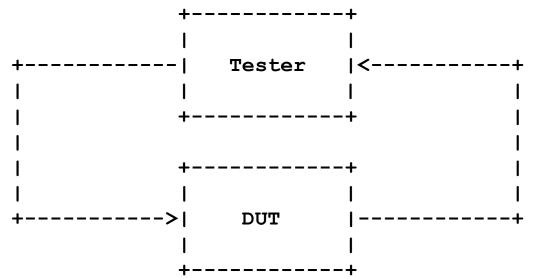
How an RFC is born?

- A few further reviews follow...
 - Further new versions with minor modifications may be produced
 - When everything is finished, an RFC number is assigned, and no more changes are possible
 - An *Errata* may be added
 - May be *obsoleted by* or *updated by* other RFC-s
 - RFC-s are worth reading in HTML format, as it contains information, if the RFC was *obsolated* or *updated* by other RFC-s, or if *errata exists*

Personal experience

- Three examples
 - Marius Georgescu invited me as a co-author in 2015:
 - <u>https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-00</u>
 - Published as RFC 8219 in 2017
 - We tried as strangers in 2017
 - <u>https://tools.ietf.org/html/draft-lencse-tsvwg-mpt-00</u>
 - I tried on the v6ops mailing list in 2018
 - <u>https://tools.ietf.org/html/draft-lmhp-v6ops-transition-comparison-00</u>
 - One new co-author, it may be a long lasting task...

Lessons learned


- Creating an RFC requires a lot of work an time
 - An individual I-D is not easily published as an RFC
 - Especially, if the authors are not known in the WG
 - If the WG adopts it, chances are much better
 - Key factor: the reaction of the prominent WG members
 - It is worth
 - Writing together with honored WG members
 - Being active in the WG, giving useful comments to others' drafts
 - Testing at the proper time, if there is support in the WG

RFC 2544

- Aim: to measure the performance of network interconnect devices in an objective way
 - Defines the most important aspects of the measurement to prevent gaming
 - Measurement setup
 - DUT (Device Under Test) settings
 - May NOT be optimized for the given task! 🙂
 - Frame format, frame sizes
 - E.g. for Ethernet: 64, 128, 256, 512, 1024, 1280, 1518
 - Duration of the test (min. 60s)
 - ... (and several others)

Measurement Setup

- Three measurement setups were defined
 - By default, the first one should be used

Although the arrows are unidirectional, bidirectional traffic should be used

Throughput measurement procedure

- DEFINTION: Througput
 - The maximum (constant) frame rate, at which there is no frame loss.
- Measurement procedure (Throughput)
 - The Tester transmits frames at a given frame rate for a given time (min 60s) through the DUT, and the Tester checks if the frames arrive back
 - If all frames arrived back, the frame rate is increased
 - If some frames were lost, the frame rate is decreased
 - In practice, it is worth using a binary search
 - There may be linear steps, some "hints" can be given, too.

Latency Measurement Procedure

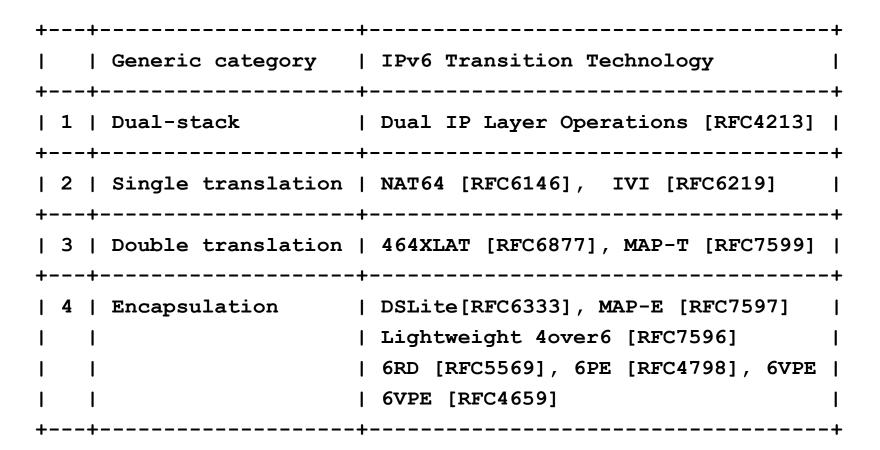
- Measurement procedure (Latency)
 - Use the frame rate determined by the Througput test
 - Use an at least 120s long stream
 - Mark a frame with an identifying tag after 60s
 - Timestamp "A": taken after the tagged frame is completely transmitted
 - Timestamp "B": taken after the tagged frame is completely received
 - Latency: B-A
 - The measurement must be performed at least 20 times, and the final result is the *average* of the values

Frame Loss Rate Test

- Measurement Procedure (Frame Loss Rate)
 - Start at the maximum frame rate for the media
 - Decrease the frame rate in fixed steps (max. 10%)
 - Measure the frame loss at the given frame rate
 - What percent of the sent frames was lost?
 - Stop, if no frame loss in two consecutive measurements

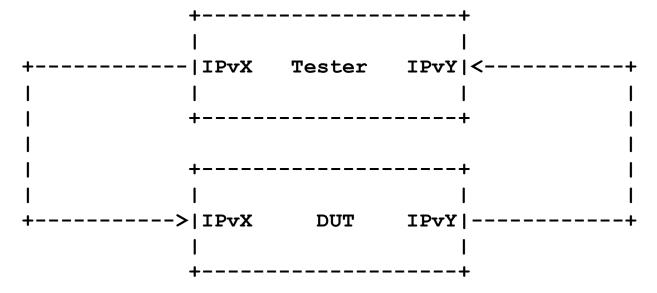
Further Measurement Procedures

- Back-to-back frames
 - How long the DUT can operate at the maximum frame rate of the media?
- System recovery
 - After overload situation, how long time is needed until lossless operation is restored
- Reset
 - After hardware/software reset (or power outage), how long time is needed until lossless operation is restored?


RFC 2544 versus RFC 5180

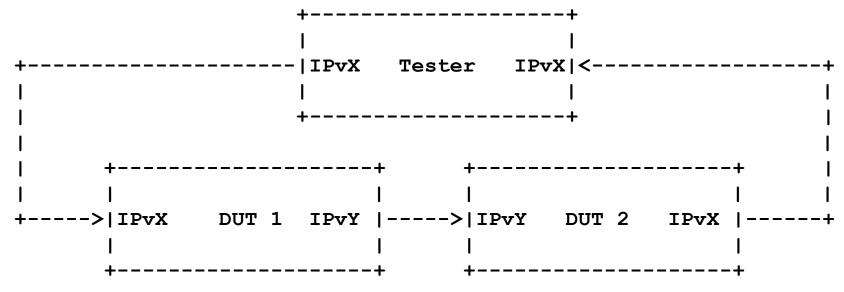
- Az RFC 2544 is IP version independent (in principle)
 - But focuses on IPv4, e.g. IP addresses: 192.18.0.0/15
 - Mentioned media types show its age
- RFC 5180 is a kind of "update"
 - In principle, focuses on IPv6 specific issues
 - E.g. IP addresses: 2001:2::/48
 - Also technology update: newer media types
 - Declares IPv6 transition technologies *out of scope*

RFC 8219 – only in short


- There are a high number of IPv6 transition technologies
 - It is not practical to handle them one-by-one ☺
- Classifies them into small number of categories
 - Only the categories are to be dealt with \bigcirc
 - Future technologies may also fit into them 🙂
 - DNS64 does not fit into any of them
 - There is a separate section for DNS64

Categories of IPv6 trans. technologies

Measurement Setup – 1


- For single translation technologies
 - RFC 2544 setup is modified as follows:

- Remark: IPvX and IPvY: X=6 and Y=4 or: X=4 and Y=6
- We call it as "single DUT test setup"

Measurement Setup – 2

- For double translation / encapsulation technologies
 - Two kinds of test setups can be used:
 - The before mentioned "single DUT test setup"
 - The below "dual DUT test setup"

 Remark: the two devices are peers: the second one performs the "reverse transformation" of the first one

Measurement Procedures

- In part, it reuses the RFC 2544 benchmarking procedures with minor modifications
 - Througput, Frame Loss Rate
- In part, it defines better procedures
 - Latency
 - At least 500 tagged frames (instead of a single one)
 - Typical Latency: the median of the measured latencies
 - Worst Case Latency: the 99.9-th percentile of the latencies
- In part, new measurement procedures
 - PDV, IPDV

- DNS64 benchmarking methodology
 - G. Lencse, M. Georgescu, and Y. Kadobayashi, "Benchmarking Methodology for DNS64 Servers", *Computer Communications* (Elsevier), vol. 109, no. 1, pp. 162-175, September 1, 2017, DOI: 10.1016/j.comcom.2017.06.004
- DNS64 benchmarking tool
 - dns64perf++: free software, available: <u>https://github.com/bakaid/dns64perfpp</u>
 - G. Lencse, D. Bakai, "Design and implementation of a test program for benchmarking DNS64 servers", *IEICE Transactions on Communications*, vol. E100-B, no. 6. pp. 948-954, June 2017. DOI: 10.1587/transcom.2016EBN0007

- DNS64 measurements
 - G. Lencse and Y. Kadobayashi, "Benchmarking DNS64 Implementations: Theory and Practice", *Computer Communications* (Elsevier), vol. 127, no. 1, pp. 61-74, September 1, 2018, DOI: 10.1016/j.comcom.2018.05.005

• Benchmarking Authoritative DNS servers

 G. Lencse, "It is worth upgrading form BIND: Performance comparison of authoritative DNS servers", IIJ Seminar, Tokyo, April 25, 2019.

https://iijlab-seminars.connpass.com/event/127000/

G. Lencse, "Benchmarking Authoritative DNS Servers", *IEEE Access*, vol. 8. pp. 130224-130238, July 2020. DOI: 10.1109/ACCESS.2020.3009141

- Stateless NAT64 measurement tool
 - siitperf: free software, available:
 https://github.com/lencsegabor/siitperf
 - G. Lencse, "Design and Implementation of a Software Tester for Benchmarking Stateless NAT64 Gateways", *IEICE Transactions on Communications*, DOI: 10.1587/transcom.2019EBN0010
 - G. Lencse, "Adding RFC 4814 Random Port Feature to Siitperf: Design, Implementation and Performance Estimation", under review in *International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems*, vol 9, no 3, pp. 18-26, 2020, DOI: 10.11601/ijates.v9i3.291

- Stateless NAT64 measurements
 - G. Lencse and K. Shima, "Performance Analysis of SIIT Implementations: Testing and Improving the Methodology", *Computer Communications* (Elsevier), vol. 156, no. 1, pp. 54-67, April 15, 2020, DOI: 10.1016/j.comcom.2020.03.034
- Further publications available
 - <u>http://www.hit.bme.hu/~lencse/publications/</u>

Possiblities for doing research abroad

- I was a guest researcher
 - Laboratory of Cyber Resilience, NAIST, Ikoma, Japan June 15 – December 15, 2017.

STITUTE

- IIJ Innovation Institute, Tokyo, Japan April 2 – July 2, 2019.
- I am glad to help, if someone is interested!

Thank you for your attention!

Questions?

Dr. Gábor Lencse

Professor

Dept. of Telecommunications, University of Győr

lencse@sze.hu

